基于Spark的网站浏览数据统计与分析

使用spark对网站的浏览情况进行统计分析,生成数据会输出到HDFS上。这边使用的数据源文件是nginx日志。tmp.log

ngnix的access.log的格式,摘抄部分日志

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

127.0.0.1 - - [05/Sep/2018:23:18:22 +0800] "GET /4DAnalog/clashreport/delete HTTP/1.1" 502 575 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:22 +0800] "GET /favicon.ico HTTP/1.1" 502 575 "http://localhost:8080/4DAnalog/clashreport/delete" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:40 +0800] "GET /4DAnalog/clashreport/find HTTP/1.1" 502 575 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:40 +0800] "GET /favicon.ico HTTP/1.1" 502 575 "http://localhost:8080/4DAnalog/clashreport/find" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:42 +0800] "GET /4DAnalog/clashreport/find HTTP/1.1" 502 575 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:42 +0800] "GET /favicon.ico HTTP/1.1" 502 575 "http://localhost:8080/4DAnalog/clashreport/find" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:43 +0800] "GET /4DAnalog/clashreport/find HTTP/1.1" 502 575 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:43 +0800] "GET /favicon.ico HTTP/1.1" 502 575 "http://localhost:8080/4DAnalog/clashreport/find" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:43 +0800] "GET /4DAnalog/clashreport/find HTTP/1.1" 502 575 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:44 +0800] "GET /favicon.ico HTTP/1.1" 502 575 "http://localhost:8080/4DAnalog/clashreport/find" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:52 +0800] "GET /4DAnalog/clashreport/delete HTTP/1.1" 502 575 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:53 +0800] "GET /favicon.ico HTTP/1.1" 502 575 "http://localhost:8080/4DAnalog/clashreport/delete" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:59 +0800] "GET /4DAnalog/chat/delete HTTP/1.1" 502 575 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"
127.0.0.1 - - [05/Sep/2018:23:18:59 +0800] "GET /favicon.ico HTTP/1.1" 502 575 "http://localhost:8080/4DAnalog/chat/delete" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36"

前期准备

需要提前准备好tmp.log上传到hdfs文件系统上

hdfs dfs -put ~/tmp.log /urlcount/

环境搭建及代码编写

1.创建maven项目

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.zonegood</groupId>
<artifactId>hellospark</artifactId>
<version>1.0-SNAPSHOT</version>

<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.version>2.10.6</scala.version>
<scala.compat.version>2.10</scala.compat.version>
</properties>

<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>

<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.5.2</version>
</dependency>

<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>1.5.2</version>
</dependency>

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.2</version>
</dependency>
</dependencies>

<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.0</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-make:transitive</arg>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18.1</version>
<configuration>
<useFile>false</useFile>
<disableXmlReport>true</disableXmlReport>
<includes>
<include>**/*Test.*</include>
<include>**/*Suite.*</include>
</includes>
</configuration>
</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>com.zomegood.hellospark.WordCount</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

如果没有src/main/scala目录,需要手动创建

image

2.新建伴生对象com.zomegood.UrlCount.Main.scala

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
package com.zomegood.UrlCount

import org.apache.spark.{SparkConf, SparkContext}

/**
* @author zyh
* @create 18-9-5 下午11:32
* 统计URL访问次数
*/
object Main {

def main(args : Array[String]) : Unit = {
val conf = new SparkConf().setAppName("UrlCount")
val sc = new SparkContext(conf)
// 先将nginx日志用空格符分割开,第7个位置的url,后续从新将url组合成新的Tuple(url,1)
// Array((/4DAnalog/clashreport/delete,1), (/favicon.ico,1), (/4DAnalog/clashreport/find,1), (/favicon.ico,1), (/4DAnalog/clashreport/find,1), (/favicon.ico,1), (/4DAnalog/clashreport/find,1), (/favicon.ico,1), (/4DAnalog/clashreport/find,1))
var rdd1 = sc.textFile(args(0)).map(_.split(" ")).map(arr => (arr(6),1));
// 根据Tuple 的每个key进行分组统计
rdd1.reduceByKey(_+_).saveAsTextFile(args(1));
sc.stop()
}

}

3.使用maven打jar包

运行

mvn clean package

以集群方式运行

bin/spark-submit --class com.zomegood.UrlCount.Main --master spark://cor1:7077 --executor-memory 512m --total-executor-cores 2 ../spark-mvn-1.0-SNAPSHOT.jar hdfs://cor1:9000/urlcount/tmp.log hdfs://cor1:9000/urlcount/out

image

使用saveAsTextFile运行结果存到hdfs上

image


基于Spark的网站浏览数据统计与分析
http://example.com/2018/09/03/2018-09-3-基于Spark的网站浏览数据统计与分析/
Author
Hoey
Posted on
September 3, 2018
Licensed under